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AXTIAL CURRENTS, SUPERCURRENTS AND ANOMALIES
IN SUPLRSYMMETRIC QED

Thomas E. Clark

Theoretical Division
Los Alamos Sciehtific Laboratory
Los Alamos, New Mexico 87545
U.S.A.

The currents associated with the supercouformal symmetries
are defined as moments of the supercurrent, V.. All of

the current (non-, consecvation equations are tnOWn cn-e

the generalized trace of the supercurrent, D™V,s , is tound.
The superconformal anomalies are shown to have coefficients
given by 5 of the Callan-Symanzik equation. I super QED
there is an additonal U(l) axial current whose énomaly has
a coefficient with no radiative corrections.

INTRODUCTION

In 1974 Ferrara and Zumino (1) discovered the existence of a supercurrent whose
components contained the R-symmetry (chiral) current, the restricted supersymmetry
current and the energy-—-momentum tensor. A further clarification of the relation-
ships between these component currents and their various (non-) conservation
equations was desired. 1In particular the Adler-Bardeen theorem (2) predicts that
the coefficient of the anomaly for a suitably defined axial current has no
radiative corrections. While on the other hand the scaling anomalies given by the
trace of _(he energy-momentum tensor have a coefficient £ of the Callan-Symanzik
equation. However 1f the various currents as well as thelr anomalies are to be
related by supersymmetry the coefficients of the anomalies should be the same

(up to numerical factors).

In references (3) and (4) the supercurrent and axial current were studied in
supersymmetric QED. It was shown that all of the superconformal currents are
given by moments of the supercurrent, Vg5 , and all (non-) conservation equations
nof these currents were known once the generalized trace, Dava& , of the sopei-
current was found. This is completely analogous to the ordinary field theorctic
case where all of the conformal currents are given by moments of the energyv-
mgmentum tensor, Tuv' and hence all conformal anomolies were given by 1ts trace,
Ty The generalized trace was then found to have an anomaly whose coefficient
was given by B of the Callan-Symanzik equation. In particu.ar the R-symmetry
axial current defined so that it was a component of the supercurrent had an
anomaly coefficient of B. 1In super QED there was an additonal chlral U(1l)
current whose generator commutes with the superconformal generators. Its anomaly
coefficlent was shown to have no radiative corrections.

In the first section of this talk the supersymmetr c QED model is described in the
tree approximation. The action and its gauge invariance is outlined. Then the
superconformal symmetries and associated currents are discussed and the super
current defined. Finally the additional ax-al current is given. 1In the second
section the renormalization of super QED is discussed. The normal product
equations of motion are given as well as the Callan-Aymanzik equation. Then the
renormalized super current is defined and its trace equation is found. The trace
anomaly coefficient is seen to be B3/g. Finally the renormalized axial current is
defined anc the Adler-Bardeen theorem is proven.



In what fcllows in order to simplify,; the technicalities it has been assumed that
one could take physical matrix elements of operators as well as off-shell vacuum
expectation values of time ordered products of them. Since there are massless
fields in the model this in reality would be quite complicatred to show and is
assumed here only for convenience; References (3) :nd (4) contain the rigorous
off-shell calculations. Also I would like to formally mention that all of the
results reported here have been found 1in collaboration with Olivier Piguet and
Klaus Sibold both at the University of Karlsruhe and are reported in References
(3) and (4).

1. SUPERSYMMETRIC QED: TREE APPROXTIMATION

The fields of the model are ¢, a massless vector superfield containing the photon
and nhotino, and ¢..9+, massive charged chiral matter fields containing charged
fermi fields as well as charged scalar and pseudoscalar fields. The action is
invariant under parity, charge conjugation, Poincaré, gauge and supersymmetry
transformations
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where W, = gﬁﬁDu¢ . In order to quantize the model a gauge fixing term must be
added to the invarilant acticn; we add a supersymmetric Stuckelberg term
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where we have explicitly chosen the o = 1 (Feynman) gauge 1in order to_avolcd the
IR divergencies of the general gauge, and use of the identity 852 = DDDD -
1/2 (DD + DD)2 has been made.

The structural relations rn2eded in order to derive current (ncn-) conservation
equations are the equations of motion
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and similarly for ¢, ,o_

Note that we can define the source of the vector field's equation of motion as
the gauge current j(z)

I(z) = [9,0,e8% -0 0 B (2) . (1.6)
The chiral matter fields' equations of motion then imply current conservation
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Applying thils to DD %1 = 0 and DD %% = (0 yields the gauge Ward identities which
imply that the longitudinal vector field decouples from the theory
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In order to grade the conformal algebr: an additional Bose generator corresponding
to the (chiral) R-transformations must be added to the algebra. The generators
of the super conformal symmetries are given by

Bose Generators
Pu: space-time translations

UV
: dilation transformation

M : Lorentz transformations

D

KU : conformal transformation

R : R-transformations

Fermi Generators

Q ,Q+: translational (Restricted) SUSY
- - U
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conformal (special) SUSY
s U
,S.} = 20,

({sa sa} oaaku)

These generators are represented by linear superspace differential operaccrs on
the superfields that is for generator G
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etc.
where d = scale dimension of ¢ 2 2

n = R-weight of ¢ and for (anti-)(chiral)fields n = (+ = d)(- = d) and
n = 0 for vector fields. Applying these transformations to the action’we find
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and in particular
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This can be written more supersymmetrically by noting that the only x-constant
superfield of charges 1is
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Noether's theorem tells us that all superconformal currents can be written as
moments of the super current Vu associated with the above transformation (1.11):
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The gauge invariant supercurrent is given by
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Since 3"V, = - = {(p”,D }VQ& all (non-) conservation equations follow from the
generalized trace equation, DaVa& y, alone. That 1s from the equatious of motion
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Finally corresponding to the chiral rotation of the matter fields
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is the axial current superfield J5
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The equations of motion imply
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and the axial current non-conservation equaiton
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2. SUPERSYMMETRIC QED: RENORMALIZATION

The renormalized vacuum expectation value of time ordered products of fields ‘s
constructed through the Gell-Mann-Low expansion and the supersymmetric Bogoliubov-
Parasiuk-Hepp-Zimmermann momeuntum space subtraction scheme (5). Intermediate
notmalization conditions are used so that the only counterterm is the (finite)

"n "

chiral mass counterterm, '"a' which fixes the pole of the chiral field propagator
at ml. The renormalized normal product equations of motion are
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where the Ng denotes the Zimmermann normal product with ¢ , indicating how
many momentum space subtractions to make, being greater than or equal to the
dimension of the composite field. These equations have the form of the naive
Euler-Lagrange equatrions however the mass terms are oversubtracted (N, rather
than N,)! The other structural relation needed in order to study the trace
equatidons 1s the Zimmermaun identity relating W3[¢+¢_] to N2[¢+¢_] this is
the local Cal'an-Symanzik (C-S) equation
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B,Y,0,8 the Callan-Symanzik functions. Consider the one-particle irreducible
ordered function of this equation with b-vector fields and (f)f (anti-)

al matter fields; integrate this over the chiral measure and add to the anti-
al equation. This yields the global Callan-Symanzik equation
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soft mass insertion.

1e renormalized supercurrent is then defined by

v(t_:ree) _ 161

V. R LI G2 B (2.4)

o oo

‘he normal product equations of motlon and the Zimmermann identity yield the
jupercurrent generalized trace equation

- _
DN,V ] 2D S
(2.5)

S=-8—i-0m\l [¢¢]-18

3 N [ — W W ]

~k
with N3 a gauge invariant normal product of WW. This implies that all
superconformal anomalies go as B/g .

Finally the renormalized axial current is defined by
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The normal product equations of motion and the Zimmermann identity vield the
anomalous axial current non-conservation equation
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with N another gauge invariant normal product of WW. The anomaly
coefficgent is given by
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In order to show that r has no radlative coirections we apply the C-S
equation to r itself
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where 6 is an extra C-S function for the inserted C-S equation. In order

to show that the RHS = 0 consider the axial curtrent Ward identity for r itself,
this implies

som[A” + 8¥]r = ‘/HVBNZ[Q(a)]r (2.10)

with
Q = ags” + blo,0,e8% + ¢_v_e B

Then apply the gauge Ward identity and supersymmetry Ward identity to NZ[Q(3)]r
to show that the RHS of (2.10) equals zero. Thus

Ble %g -2]r =0 . (2.11)

Since B # 0 this implies that r is given by the second order triangle graphs
only. (See Figure 1.)
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TIGURE 1: Graphical Contributions To r.
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The diverge1ce of the axial current is given by, recalling that J
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